CH4120 – Molecular Thermodynamics


CH4120 – Molecular Thermodynamics


Courses content:

Postulates of statistical mechanics, correspondence of statistical approach with laws of macroscopic thermodynamics, ensembles: : NVE, NVT, NPT, μVT, partition functions thermodynamic properties via partition function derivatives, energy, density, fluctuations in NVT and NPT ensembles, ideal monoatomic and polyatomic gases, configurational integral, dense gases and liquids, Virial equation of state, particle densities & molecular distribution functions (canonical ensemble), relationship of thermodynamics to intermolecular structure g(r), Potential of mean force. Grand-canonical ensemble & distribution functions, compressibility equation. Intermolecular potentials, Carnahan-Starling & van der Waals EOS.

Molecular theory of pure liquids. Integral equation theories I: g(r), YBG equations, BBGKY hierarchy, Corresponding states theory. Perturbation theories of liquids (Chandler, Rowlinson, Zwanzig, Barker-Henderson). Solution thermodynamics. Cell and hole theories (lattice models), Lennard-Jones & Devonshire model, Liquid mixtures (compressibility etc.). Lattice theory, local composition theories of liquid mixtures.

Fluid phase-equilibria, molecular equations of state for VLE and LLE, Redlich-Kwong, Gibbs ensemble

Textbooks/references:

  1. T.L. Hill, Introduction to statistical thermodynamics, Addison-Wesley, 1960
  2. A. McQuarrie, Statistical Mechanics, University Science Books (2000)
  3. Munster, Statistical thermodynamics, Springer, Vols. 1, 2 (1970)
  4. T.M. Reed & K.E. Gubbins, Applied statistical mechanics, McGraw-Hill (1973)
  5. C.G. Gray & K.E.Gubbins, Theory of molecular fluids, vol.I. fundamentals, International series of monographs on chemistry, Clarendon Press, Oxford (1984)
  6. L.L. Lee, Molecular Thermodynamics, Butterworths (1988)
  7. J.M. Prausnitz, R.N. Lichtenthaler & E.G. Azevedo, Molecular thermodynamics of fluids phase equilibria, Prentice-Hall (1986)